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ABSTRACT

This .paper considers a class of Markov chains on a bivariate state

space (pN,E), whose transition probabilities have a particular "block-parti-

tioned" structure. Examples of such chains include those studied by Neuts

(1978) who took E to be finite; they also include chains studied in queueing

theory, such as (Nn Sn) where Nn is the number of customers in a GI/G/l

nqueue immediately before, and Sn the remaining service time immediately

after, the n~' arrival.

We show that the stationary distribution 11 for these chains has an

"operator-geometric" nature, with 1(k,.) - fH(O,dy) sk(y,-), where the

operator S is the minimal solution of a non-linear operator equation.

Necessary and sufficient conditions for R to exist are also found. In the

case of the GI/G/l queueing chain above these are exactly the usual stability

conditions.

4'1
!I Keywords: GlI/G/l queue, phase-type, invariant measure, Foster's conditions.
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1. INTRODUCTION

In [8], (9] and (10] Neuts has shown that certain classes of Markov

chains admit a stationary distribution of a form which he has termed "matrix-

geometric". .- Such chains have a bivariate state space (i,j), i - 0,1,...,

j - L,...,n; the stationary distribution T(i,j) has the geometric property

that

(oj).= o1(j), J = l ... n.

H(ij) = (0onS')j 1, ...,n,

for a particular nxn matrix S.

The class of chains with this structure includes embedded !Markov

chains associated with GI/PH/l queues, where the service time distribution

is "phase-type" [7]. The second variable j then indexes the phase of the

service time.

In this paper we investigate more general chains with bivariate space

(i,x), where the first coordinate i takes on integer values 0,1,.., but -

the second coordinate x is in E, some general measure space. In particular

examples such as the GI/G/1 queue in 94 below, E will be taken as (0,-).

We let & denote a-field on E; when E - [0,-) we will take & as the Borel

a-field. We denote by IN the set {0,1,...., and the set ixE will be called

the ZeveZ i, and denoted by ±.

The basic Markov chain {X.) that we shall study is assumed to have a

transition probability law denoted by P(i,x; J,a.) for i,j c N, x c E, A C

As usual it is taken to be a measurable function in x for each A c & and

a substochastic measure on & for each i,j e N and x e E; we also assume

SP(i,x; J,E) - 1. The n-step iterates of P are defined by

P J(ix; J,A) - n P (i,x; k,dy) P(k,y: J,A)
k E

and have the interpretation
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P n(i,x; JA) a IPX n c xA I X0- (i,x))

We now impose the following "spatial homogeneity" pattern on the

transition law P. We assume that

and for each k - 0,1,... there exists a substochastic transition kernel A~k

(that is, a collection Ak(xA), x 6 E, A e 9, measurable in x for each A

and a measure on &for each xc e E, with Ak(x,E) < I, x c E) such that for

j A 0,

(1.1) P(i,x; J,A) Aijjx)

and we write

P(i,x; 0,A) -B i(xA)

Since P is stochastic, from (1.1) we have

P(i,x; 0,E) 1- (,E

i

J1 Aj(x,E)

(1.2) Bi (x,E)

Diagramatically, (1.1) and (1.2) show that we can write P as

B 0  A 0  0 ...

(1.3) p- B 1  A 1  A 0  0..

B2  A2  A A0  0 ...

2 2. 1 .

by labelling the states in increasing order on the first variable. Typically

(see [81 and §4) in queueing applications we have Ak(x,E) 1, so that
k-0

B i (,E) A.k(x,E).
B~(E) j41
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2. THE OPERATOR-GEOMETRIC FORM OF IT

A stationary probability measure T for the chain {X ) is a collection

n
of measures n(j,) on E, J e N, with 1 T(J,E) - 1, and satisfying

fi(J,A) - J f(k,dy) P(k,y; J,A) , A E , j c t'.
k E

From (1.1) and (1.2), for J > 0

(2.1) T(J,A) - 1 I(k,dy) Ak_,+l(y,A)
kE

whilst for J - 0,

(2.2) T(O,A) 1 1 f(k,dy) Bk(Y,A)
k EE

In order to use the theory of general Markov chains to find conditions

under which a measure 11 satisfying (2.1)-(2.2) exists, we shall assume the

following.

Irreducibility condition: There is a measure 0(-) on N x E such that, when-

ever A(J,A) >0 for some J c N, A c &, for each i e k and x e E we have

(2.3) 0 < Y Pn(i,%; jA)
n-l

and

(2.4) $(O,E) > 0

The condition (2.3) is Just the standard 4-irreducibility condition (see

(14], 52, or [11], [12]). We impose (2.4) specifically because of the

behaviour we wish to investigate : the chain {Xn  satisfying (2.4) and (2.3)

is such that from any pair (i,x), the zero-level 0 can be reached eventually

with positive probability.

The key to the operator geometric structure of any solution T to

(2.1) and (2.2) is a last exit-time representation of H, familiar in the

countable case (cf. [11). We write, for i,J e k, x c E, A ,
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0P (i,x; J,A) -P(i,x; J,A)

0Pn(i,x; J,A) P J OPn-l(ix; k,dy) P(k,y; JA)
k>O EE

These are the taboo probabilities of {Xn I where the level 0 is taboo; and

we write

0
L(i,x; J,A) -' I oPn(i,x; J,A)

If T = inf(n > 0 : X e 0), then

L(O,x; 0,E) ,-'('r0 < ) X0 = (O,x))

<1,

and L(O,x; J,A) for j > 0 is just the expected number (possibly infinite)

of visits to state j x-A before returning to level 0.

We now have

Theorem 1: (1) If the chain IX I has a stationary probability measure 11,U-

then f(0,E) > 0. For 11-almost every x e E, we have L(O,x; 0,E) - 1.

The chain { X nI defined on E with transition law L(x,A) - L(O,x; O,A) has

a stationary probability measure, 0H ( '), satisfying

(2.5) o1(A) J 0oR(dy) L(y,A), A c S
0 0

E

The measure H is then given, for j > 0, by

(2.6) f(J,A) - c f 0R(dy) L(O,y; J,A), A 9,

E
and

(2.7) R(O,A) , c 0 R(A), A c 6

where

(2.8) C = [(O,E)j] - > 0

(ii) If 0 1(A), A c & is a probability measure on & satisfying

(2.5), then n defined by (2.6) and (2.7) is a a-finite measure satisfying
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(2.1) and (2.2).

Proof: Most of these results are well-known in a general context. If H

exists as in (i), then H >> 0 and so H(O,E) > 0 from (2.4). The existence

of n implies the chain Xn' is 1-positive recurrent (see [14]) and so, since

1T(0,E) > 0, we have L(i,x; 0,E) - 1 for f-almost all (i,x) E IN xE. It is

then easy to see ([11], pp. 32-33) that 0 = (0,.)/fl(0,E) is invariant

for the chain with transition law L(x,A); one has to check that, writing

N - {y e E : L(y,E) < 11, the set N = {y E E : Ln(yN) > O} also has
n

n(N) - 0, which is a standard result.

Since {X } is a 1-irreducible chain, 11 is unique; it is not difficulta

(11], p. 32) to check that the measure given by the right-hand sides of

(2.6), (2.7) is invariant for {X 1, and so must be n. This also shows

n

that (ii) is true. 0

This theorem basically shows that the only invariant measure is

given by (2.6) and (2.7), and motivates the investigation below into the

structure of the quantities L(i,x; J,A). We shall define, analogously

with the quantities L(i,x; 0,A), the more general taboo probabilities

f.L(i,x; J,A) pn(ix; J,A)
n

where

I pn(i,x; J,A) - P(Xn 4 J x A, Xr 2, r - l,...,n-1 I X 0  (i,x))

The first crucial aspect of the structure (1.3) of P that we use is that

the chain moves in a "right-continuous" way between levels; from i one can

increase levels to 1+1 but not in one step to i+ k, k > 1. Hence, if

£ <_ i, I < J, Pn(i,x; j,A) _ P{X e j x A, Xr (0,,...,.) r - 1,...,

n - 1 f X0 - (i,x)}. We can thus define, as in [9],

(2.9) s(k)(x,A) - iL(i,x; i+k,A), i C Nr, x d E, A c &,

independent of i. (This can be checked by writing out S (k) in terms of
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the Al) We write

S(x.,A) -S (1)(xA

The following result then parallels Theorem 1 of [9].

Theorem 2: -Suppose the Markov chain IX n has an invariant probability

measure II.

(I) For k >0,

flM,A) - c f 0 11(dy) S (k)C(y,A)

E

where c (f(,).

(ii) For k > 0,

S (k) (xA)' aS Sk(xA), x cE,A e ,

where

S 1 (x,A) - S(xA), x e E, A c 9

and

S k(x,A) f S sk-l (x,dy) S(y,A), x c E, A c a,
E

are the usual Iterates of the kernel S~x,A).

(iii) The kernel S satisfies the non-linear operator equation

*(2.10) S - A[S]

where we.define, following [8], the formal series

D[Q](x,B) ~ 'Qk (x,dy) D k(y,B), x c E, B e a.
k-0 E

for any set D of kernels and the Iterates Q k of any kernel Q.

(iv) The kernel S is 1-transient (see [14]) and in fact for 0 -lotall

x iE E,

(2.11) k (x,E)<

(v) If Sis another kernel satisfying S =A[9], then
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(2.12) S(x,A) > S(x,A), x e E, A c 9.

Proof: (i) This is just a restatement of the general result in (2.6) and

(2.7), using the fact that by definition (2.9), L(O,y; k,A) - s (k) (x,A).

(ii) We have, decomposing over the time of last entrance to level k,

0Pn(o,x; k+l,A) - O r I Pr(o'x; k,dy) kPn-r(k,y; k+l,A)0=

E

(2.13) f j 0 Pr(O,; kdy) 0 pn-r(0,y; l,A)

E

and summing (2.13) over n gives the result

s(k+l)(xA) f J (k) (xdy) S(y,A)

E

as required.

(iii) In this case we decompose 0Pn over the position at time n-l.

By construction, 0P(O,x; 1,B) - A0 (x,B) and for n>l,

(2.14) Pn(O,x; 1,B) - 1 Pnl(0x, k,dy) Ak(y,B)
k-iE

summing over n leads, using (ii), to the required result.

k.(k),C k(iv) Since Sk - S k , we have that k sk(x,E) E(T0 ) X0 - (O,x)).
k=l

It is well-known that, since *(O,E) > 0, this quantity is finite for H-

almost all x e E; to see this one uses the fact that, from (i) above,

I 11(N XE) - c J OR (dy) Z Sk(xE)

E k

(v) As in 19], we first define another sequence of kernels by

setting X0(x,B) _0 , and XN+l - A(XNI for N > 0. For every x e E, B e

we have X0 (x,B) < S(x,B), and by induction

(2.15) XN+ 1 (xB) - AIX[(xB) AIS](x,B) - S(x,B)
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A similar calculation also shows XN(x,B) to be monotonically increasing in

N for every x c E and B c 9. Hence the quantity X*(x,B) - lim t XN(x,B) exists

for every x e E and B e 9. For each fixed x, this setwise convergence guaran-

tees that X*.(x, °) is a measure on &; for each B E 91' X,(',B) is clearly a

measurable function on E which is finite except perhaps on the set

NS - {y e E .: (y,E) - -}. The kernel X, is a solution to (2.10), since

the monotone convergence of XN(x,B) to X*(x,B) implies firstly that

(x,B) + X,(x,B), and then that X,(x,B) - l Xm KN(x,B) - A[X,](x,B)

N

Moreover (2.15) shows that X*(x,B) < S(x,B) for any solution S satisfying

(2.10), so that X, is the minimal solution of (2.10).

We now show that in fact X, = S, as in (9]. Define

N
SN(x; kB) - 1. Pn(O x; k,B)

nu-l

so that clearly SN(x; 1,B) t S(x,B). Now from (2.14), we have

(2.16) SN(x; 1,B) - Ao (x,B) + -SN1 (x; k,dy) Ak(y,B)

E

Moreover, the last exit equations (2.13) give

SN- (x; k+l,B) < S N-1(x; k,dy) SNl(y; 1,B), B C

so that SN_(x; k+l,B) < Sk+l(x; 1,B), B c &.N-1N-1

Substituting in (2.16) gives

(2.17) SN(x; 1,B) < f J' s -(x; ,dy) Ak(yB)
k

Finally, note that S1 (x; 1,B) - Ao(x,B) = XI(x,B), and so from (2.17), we

have by induction

s SN(x; 1,B) XN(x,B)

Taking limits as N -o gives S(x,B) < X,(x,B) as required. 0

L - . -. , .......... i , .. ...; ...... -, - -, - r ! -
' - -
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This result shows that Theorem 1 of [91 and Theorem 3 of (8] are

essentially a product of the standard construction of n as in Theorem 1

above, with the geometric part Sk coming from the right-continuity and

translation invariance of P. The multiplier 0H is shown in Theorem 3 of

[8] to be an eigenvector of the matrix B[S]; our next result gives the

probabilistic explanation for this.

Proposition 1 : The Markov chain (oX has the transition law
O n

L(x,A) - B[S3(x,A)

and hence when {X n } has a stationary measure n, for 01H-almost all x c E,

(2.18) B[S](xE) - 1

Proof : As in (2.14), oP(O,x; OA) - Bo(x,A) and for n > 1

OPn(Ox; O,A) - k fl 0Pn-1 (O,x; k,dy) Bk(y,A)

E

so that the form of L(x,A) follows on summing over n. The result (2.18)

is then immediate from Theorem 1(i). 0

The probabilistic interpretation here explains (2.18) which is

derived directly in [8]. The direct derivation as in [8] does give us

the following uniqueness result for the kernel S.

Theorem 3 Suppose S sateIsfies S - A[S]. For any a e E, either

ta C N {y ^ sk(y,E) =I, or SOL,A) S(a,A), A .
k

Proof : From (2.12), S(x,A) > S(x,A) for all x e E, A e & (note that this

proof does not require H to exist); and so for all A,

(2.19) B[S (x,A) > [S](x,A)

moreover, for any x, A, the inequality in (2.19) is strict if there exists

B with k x,B) > Sk(x,B) and Bk(y,A) > 0, y e B. Now note from (1.2) that
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Bk(yE) < B1 (y,E) for all y e E; and so, since D(O,E) > 0, it follows that

BI(y,E) > 0 for all y e E, from (2.3). Hence from (2.19) if for some x e E

and B e &, S (x,B) > S(x,B), then

(2.20) B(S](x,E) > B[S](x, E)

Now suppose a 4 N. Then

B[^SI(x,E) k (x,dy) Bk(Y,E)

k=0 E

I s(x,dy) [1 - I A,(y,E)]

k-O L=0
E

k A
S (x,E) f sk(x,dy) A (y,E)
k-O L- k= z

E

=Ok=O 0
E E

M i -k (xE)- S s(x,dw) S(w,E)

k-O E k0

=1

from (2.10) and the fact that sO(x,E) :-- i. Since a N, the minimality of

S implies a 4 N so (2.21) also shows B[S](a,E) - 1. Hence (2.20) cannot

hold with a 4 N, and so S(a,B) - S(a,B) as required. 0

This result is in some sense an analogue of Theorem 2 of [8], although

the proof is quite different, and the uniqueness result is not as strong.

We need more structure than is generally available (unless E is finite) to

gain the complete analogue of Theorem 2; we now investigate this. Following

[15], we call the kernel {S(x,A)l R-recurrent if (i) S is U-irreducible for

some P, (ii) for any r < R there is some A e & with u(A) > 0 and some x e E

with I Sk(x,A)rk < O, (iii) for all A e & with V(A) > 0, and all x c E, the
k

series I sk(x,A)Rk diverges. Recall from [15] that there is then a unique
k

... .. ... _ _....._=_"_"_ __,_ _..... ... j
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R-subinvariant measure Q(.) satisfying

(2.22) Q(A) > R J Q(dy) S(yA), A ,

which is R-invazriant, i.e. satisfies (2.22) with equality. The quantity

R-1 is the natural analogue of the Perron-Frobenius eigenvalue for finite

matrices, with Q the corresponding eigenvector.

Hence the restriction in [8] to solutions of (2.10) with spectral

radius sp(S) < 1 corresponds to restricting ourselves to solutions of (2.10)

with radius of convergence R > 1. If S is 1-recurrent then this is the

natural analogue of sp(S)' - 1, whilst if S is K-recurrent for R > 1,

then this is analogous to sp(R) < 1. Our next result thus covers the

dichotomy of Theorem 2 of (81 exactly if we recall that when E is finite and

R > 1, then I Sk(x,E) < - for all x; this does not happen when E is infinite.

Theorem 4 : Suppose that for some measure j the kernel A(x,B) E I Ak(x,B) is
k

ip-irreducible, and that the minimal solution of S A[S] is U-irreducible

for some p. Then the convergence norm R of the kernel S satisfies R > 1.

Suppose further that S is R-recurrent. Either

(i) R - 1: and then S is the unique (up to definition on a 4-null set)

solution of S - A[S] with convergence norm at least unity; or

(ii) R > 1: and then if S - A[S], either I(N) - 0 and so from Theorem 3

S - S -a.e.; or N - E, and so S(xE) < S(x,E) for every x 4 N. In

particular, if (X n has a stationary measure 11 then either S S -a.e. or

S < S OI-a.e.

Proof : Since [A(x,.)} is -irreducible, it has at least one 1-subinvariant

measure V (see[15]). Uet X be the sequence of kernels approximating S as

in the proof of Theorem 2(v). Clearly v(B) > f v(dy) X0 (y,B), and by
induction
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fV(dy) XN~l(y,B) 1) f(dy) ( 4y,dw) A k(wB)
E E kE

(2.23) <fV(dw) I Ak(w,B)

E

-~ <V(B)

hence v(B) > Jv(dy) S(y,B), and hence [15], since S has a L-subinvariant

measure, S must have convergence norm R > 1. Assume now that S is R-

recurrent.

W1 Let S be any other kernel satisfying S -A[S]. If S is 1-recurrent,

and S has convergence norm R > 1, then S < S implies that S is 1-recurrent

also. Let Q be the unique 1-invariant measure of S; from (2.22), and (2.10),

Q(B) f Q(dy) S(y,B)

E

(2.24) f Q(dy) k J k(y dw) Ak(w,B)
k E

Q Q(dw) I A.K(w,B)

E k

Hence Q is 1-invariant for the kernel {A(x,.)} and from (2.23), we have

that Q is 1-subinvariant for S. Since S is 1-recurrent, it has a unique

1-subinvariant measure Q which is thus Q. Thus we have for all B c &

(2.25) f Q(dv) S(w,B) - Q(B) f Q(dw) S(v,B)

E E

and from (2.25) and the minimality of S it follows that for each B C E

S(v,B) - S(w,B), except perhaps for w e D B where Q(D B 0. By taking a

sequence B t E with Q(B) < - for each j it follows that there exists

D - v D with Q(D) -0 such that SCw,B) ES(w,B), w D. Since Q >> 1J

we Lhave proved (i).
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(ii) As in [8], we write A*(x,B) = I A.k(xB) zk, 0 < z < 1.
z k=0

Suppose that S is R-recurrent with R > 1, and let Q be the unique R-

invariant measure for S. As in (2.24) we have

(2.26) Q(B) - R J Q(dw) R- k (wB)f Ak(WB
E k

so that Q(-) is also R-invariant forA*_ (w,A). Write C(w,A) - A'R (w ,A);

and note that, since {A(x,-)} is 4-irreducible so is {C(x,,)}.

Now suppose S satisfies (2.10), and assume that W(N) > 0. Note first

of all that N _ {y-j . k(y,N) > 0}, and hence F - N^c is "closed" in the sense
k

that if y c F, then S(y,N) - 0. But from Theorem 3, on F we have

S(y,.) S(y,.); so S(y,N) ='0, y e F. Since S is ii-irreducible, this

implies that either F is empty (i.e. N - E as required) or else U(F) > 0;

and in the latter case from (2.22) we have Q(F) > 0.

Let QI(A) - Q (A fl F); standard results give that Q is also R-

invariant for S, when S is R-recurrent (but not necessarily otherwise),

and so from (2.26),

(2.27) QI(A) - R f Q1 (dw) C(w,A)

But iterating (2.27) and summing shows

QI(A) [1-R-1 - l- f Q1 (dw) I ck(w,A)
k

taking A - N then leads to a contradiction since *(N) > 0 implies

C ck(w,N) > 0 for all w but QI(N) - 0 by construction. 0
k

Remark : If we assume that E is finite then the assumption that A is

irreducible is enough to ensure that S is irreducible, using Perron-

Frobenius theory: see [8], pp. 187-188.
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§3 Neuts' "mean-drift" condition

In Theorems 2 and 3 of [8], Neuts shows that the existence for {X I
n

of an invariant probability measure of matrix geometric form is equivalent,

when the matrix A I A.k is stochastic and irreducible, to
k

(3.1) f v(dw) a(w) > I

where S(w) I xi An(w,E) and V is the unique invariant measure for
n0O

{A(x, )1. In his context, where E is finite, \ is guaranteed to exist from

Perron-Frobenius theory, and the proof that (3.1) is equivalent to the

existence of a stationary distribution relies heavily on that theory.

In the general context we need other tools. We have already shown

that any stationary measure must be "operator geometric"; in this section

we investigate the probabilistic significance of (3.1) and show that it is

very closely related to the positive recurrence of {Xn}, provided Bk(xx.)

has suitable structure. Specifically, we let {X } be a chain as in §1 with
n

the zero-level probability structure

(3.2) Bk(x,A) A (x,A)
J -k+l

and let Pn(i,x; J,B) denote the n-step transition probabilities of {Xn 1.

We shall need the following relationships between [Xn) and {A(x,-)}.

Proposition 2 : (i) For every n, i and x

(3.3) Pn(i,x; x B) - An(x,B)

(ii) If {Xn) is i-irreducible, then {A(x,-)) is P-irreducible,

when 1p(B) = $(I XB), B e

(iii) If Ixn} is i-irreducible, and has a stationary

probability measure-i, then (A(x,*)} has a unique stationary probability

measure V, with V(-) 11 (c.'
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(io) if Ix nI is I)-irreducible, and {A(x,-)} has a stationary

probability measure, then either

(a) {X I also has a stationary probability measure; or

(b) for 0-almost all (i,x), and any level J,

(3.4) Jim! ~ M(ix; j,E) _ 0
n-w ml

Proof W' From (3.2) we have P(i,x;' IN,B) -A(x,B), for all i; and thence

by induction

in(i,x; fI,'B) - FJ 'l(i,x; k,dw) P~k,w; Nr,B)
k E

f Jn-lcix; N,dw) A(w,B)

E

e (nx, B)

(ii) If i~(9xB) > 0 then for each (i,x), there exists n such that

0 < p'n(i,x; OB) - An(x,B) so that {A(x,-)I is *j-irreducible.

(iii) If IIexists, then from (3.3)

fl~tXB)- ~J f(k, dw) P (k, w; IN, B)

f ff (t xdw) A (w, B)

and so v(-) 1 1(N x-) is stationary for {A~x,-)): the uniqueness of V follows

since {A(x,-)) is *~-irreducible.

(iv) Suppose that V exists but Rl does not. From Proposition 4.2 of

[14] there is then a sequence of sets B(k) t Nx E such that for all (i,x),

in( i, x; B (k)) 0, n - c

Fix the level j and let (j xC(k)) - B(k)- VIJ. Since V is a probability

measure we can certainly choose k sufficiently large that v(C(k)) > 1 - E,

for given c > 0. Now Proposition 4.2 of [141 also shows that for -almost
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all x,

(3.5) . mn Am(xCC(k)) v(C(k)) > 1 -E

n-Oco 1

and so from (3.5) and (3.3) we have

1im - Pm (i,x; j,E)n ~

n n
li Xr Pm~i~x; J,C(k)) + urn I Pm(i,x; J,E\C~k))

rn-i n- m'.l

< lim I Pm(i,x; B(k)) + lum i I Am(x,E\C(k))
- n r-1 n7XD M1

<;

hence (3.4) holds. 0

Proposition 2 (iv) shows that when V exists the level sets j are

"status sets" for {Xn}; see [14], §5. We need this result in order to

prove the sufficiency of (3.1) for the existence of a stationary measure

for {X }.n

Theorem 5 : Suppose {X is -irreducible. If A(x,.) admits an invariant

probability measure V such that (3.1) holds, then {Xd admits a stationary

probability measure I.

Proof Suppose (3.1) holds. It follows that

0 < V(dw)[l - A (w,E)]
E

(3.6) k

li J V(dw)[ 1 [l-il A (yE) - k Ai(yE)]

E- iM -k+l

Now write the mean change of level of {X n as

U(k,w) - P(k,w; J,E) j -k
J-0

clearly ju(k,w)f < d+1 if k < d, and

=-- i 6*
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From (3.6), we can choose d sufficiently large that

(3.8) f V(dw) P.id,w) < 0

E

If we write Da - {y :11(d,y) > -a), then I1(d,w)I < a+lI on D a and by choosing

a sufficiently large, from (3.8) we can ensuxre

(3.9) f V(dw) p~(d,w) < 0

Da

Now consider, for fixed i,x, the quantity

*(i~x) 1 1 J i m~i,x; j~dw) pz(j,w)
n U Ml1E J

(3.10) 1 1 i ~ m(i,x; j,dw) Ui(J,w)
m1E

n1 i ' m~i,x; j,dw) p(j,w)
min1 E J-d

Suppose {X U does not admit a stationary measure. From (3.4) and the

boundedness of ii(J,w) for j < d we have that the first term on the right of

(3.10) tends to zero as n ~,and so, using (3.7),

n-K m 1 E

(3.11)

< lim inf f P(i,x; j,dw) v~(d,w)

Da

But from (3.3), we have for any B e and any i

(3.12) n I Am(x,B) -1 im(ix; J,B) +1 - I I m(i~x; J,B)
-1 minl j-d nm.1 frO

we have already shown that the second term in (3.12) tends to zero, so using

_ _ _wl
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the boundedness of ji(d,w) on Da we have, putting (3.12) into (3.11).

an

(3.13) lrm inf 0 (i,x) < lir inf 1 A7(xdy) P(d,w)
fl-w n ni f'

D
a

Now we have assumed that [X n } is 4-irreducible, so from Proposition 2 (ii),

{A(x,*)} is *-irreducible, and moreover has by assumption a stationary

measure v. Hence (see Proposition 4.2 of [14]), for I-almost all x,

and all B c &

(3.14) nI Am(xB) -* v(B)

Since V >> i, we have from (3.14), (3.13) and (3.9) that for i-almost all

(i,x)

lira inf On(i,x) < v (dw) 11(d,w) < 0.

D
a

However, we can emulate the proof of (9.11) of 1141 with g(j,y) j to show

that for aZZ (i,x),

lim inf 0 n(ix) > 0

this shows that our assumption that {Xn does not have a stationary probability

measure (and specifically, that (3.4) holds for individual j) cannot be true,

and so 11 does exist as required. 0

The proof above shows that Neuts' condition (3.1) is effectively an

average "inean-drift" condition, where the averaging is done over the distri-

bution V. Theorem 9.2 of (14] shows that such an average mean drift

condition may also be necessary, under some extra conditions, for positive

recurrence.

We now turn to the necessity of condition (3.1) for existence of a

stationary measure for the chain {Xn}.

*• •



-19-

In order to do this, we first define a further chain {X*} withn

transition probabilities on the state space {...,-1,0,1,2,.. . x E given

by, for x c E, B c &,

P*(i,x; JB) - AJi+l (xB) , i > 0, j - .. ,-1,0,,...

P*(i,x; 0,B) - 6(x,B) , i < 0

The chain {X} has the same motion as except that, when Xn reaches the

level 0, X* actually takes on the negative level that X is "trying" to

reach; and X* is then replaced at level 0 at the next step, but in the
n

same "E-position". Trivially, if {Xa} is (D-irreducible with (0 X E) > 0

then so is {X*}. We also haven

Proposition 3 : If X has a stationary probability measure R, then {X*} has
n n

a stationary probability measure ]I*, and for some constant b, we have

n*(i,A) - b R(i,A), i > 0.

Proof : The stationary equations for [X:} are:
n

n*(J,B) - X f*(kdy) P*(k,y; J,B)
k=O

E

(3.15) M I f*(k,dy) Ak-j.+l(yB) , j" > 0
k-J-I J

(3.16) 1*(J,B) - I jII*(k,dy) Akj +1 (y,B) , j < 0
ki0

and, for j = 0

T* (O,B) I n*(k,dy) P*(k,y; O,B)
E
(0 -l

(3.17) I *(k,dy) A+I (y,B) + . f*(k,B)
k=O k=-ADE

M f Jl*(k,dy) [ A (y,B)
k E -k+l
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using (3.16).

Now (3.15) and (3.17) are the stationary equations for {X 1; these
n

have the solution R(k,A), and this is unique up to multiplication by a

constant b (L14], Proposition 4.3). From (3.16) we can construct fl*(J,B)

for j < 0, once we have n*(j,B) for j > 0, and the proof is completed by

noting that, from (3.16),

1 0
f*(j,,) - *kd)1 yB

k 0 k+2E

< fn*(k,E) <

k-0

since for k > 0, Tl*(k,E) - b i(k,E) and I (k,E) = 1. 0
0

We can now prove

Theore 6 : Suppose {X n } has an invariant measure H. Then {A(x,-)} has an

invariant measure v, and v satisfies (3.1) provided

(3.18) J (JE) <

j=0

Proof : From Proposition 2 (ii), v exists and satisfies v(B) - I R(k,B);
k-O

so from Proposition 3, v(B) - b I H*(k,B). Hence (3.1) will hold provided
0

(3.19) f n*(k,dw) [ ) P*(kw; J,E) j - k] < 0

Now let h(j,x) J, j > 0, and 0 otherwise; and let

11h(k,w) - 1 P*(k,w; J,dx) h(j,x) - h(k,w)
j=--

Clearly (3.19) will hold provided we can prove

(3.20) k 1 0 l*(kdw) vx.(k,w) < 0
k-0E

E

We can now emulate the necessity half of Theorem 9.2 of (14] to deduce that

I
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(3.20), as in (9.13) of [14], always holds when {X*} has a stationary
n

measure, and the iesult will be proved. The only condition that needs to

be checked is that the interchange of integration in (9.14) of [14] is

valid, and it. is for this that we need (3.18). 0

Remarks : i) The need for a bound on f 1(dy) h(y) in (9.14) of [14) was

overlooked in the conditions given there; it is claimed that (9.6) suffices

but this not in fact enough.

(ii) It is of some historical interest that the condition (3.1)

of a long-term average negative mean drift, shown above to be essentially

equivalent to positive recurrence of Xn}, was also first investigated by
n

Neuts [5] in a situation where only two "drift values" were possible.

It is possible to say a little more about the finiteness of the

mean (3.18) of the measure fi. We have

Proposition 4 : The stationary measure R ha6 finite mean if either

(1) the measure v has a bounded density with respect to the measure 01; or

(ii) whenX0 has measure Ot9 then the variance of the return time to level

0 is finite; i.e.

(3.21 (dr - -, )<

E

Proof : Using the operator-geometric form of R given by Theorem 2, we have

that (3.18) holds provided

c > I i cf 0 R(dw) SJ(w,E)
J E

M C J (dw) S j (yE)
k-li -k

(3.22) E

= c J f 011(dw) X sk(wdy) S (y,E)
EEk=l J-'0E E

- I J (k,dy) S (y,E)

E k-i J-0

r--w
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Using the identification of V in Proposition 2 (iii) shows that this is

(3.23) v(dy) sJ(y, E) - I(jE) .

E j=O j

If V has a bounded density with respect to 0 , then (3.23) is finite since

E

this proves (i). To prove (ii) we use the fact that

sJ (y,E) -1 + ( 0  x0 - (0,y))

so that (3.22) is also

(3.24) fki I (k,dy) [1 + 1ET X0 1 = O,y))

< 1 + fk0 f(k,dy)E(T0 I X0 - k,y)

E

from Cogburn (2] Corollary 3.1, we have that (3.24) is finite provided (3.21)

holds. 0

In this section we have proved that Neuts' mean drift condition is

essentially related probabilistically to the positive recurrence of the

chain {X n}. It is of some interest to know what the positive recurrence

of {Yn implies for an arbitrary chain {Xnl with structure (1.1). This

seems difficult to say. From (1.2) and (2.17), L(x,E) - L(x,E), and this

positive recurrence of {Xn I Implies at least that fo X is well-defined in

the sense that L(x,E) - 1 for 0R-almost all x. Moreover {y: L(y,E) - 11

is stochastically closed, so provided {Xn } is 4-irreducible and

Bk(Y,') << Bk(y,-) for all k,y, we can deduce that L(x,E) - 1 for 4-almost

all x.

However, this does not even guarantee the recurrence of the process

{f0 Xn. The following example illustrates this.
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Example Let E - {0,1...., and let the transition law take the form (1.1)

with only A0 and A2 being non-zero, and given by

A0 (xx-l) - pq , x> 1 ,

A0 (x,x+l) - (l-p)q , x> I ,

and A0 (0,0) - pq, A0 (0,1) (1-p)q

A2(x,x-1) - p(l-q) , x > 1

A2 (x,x+l) - (l-p)(l-q) , x > 1

and A2 (0,0) - p(l-q) , A2 (0,1) - (l-p)(l-q)

with 0 < p < 1, 0 < q <.

Then the marginal chain with transition matrix {A(x,.)} is a random

walk on a half-line, with a stationary probability measure v if and only if

p > . In the other dimension the mean change in level is, for levels

greater than zero, always of the same sign; and this is negative, i.e.

S(x) > 1, if and only if q < . Hence the necessary and sufficient

condition for {X n} to have a stationary measure is q < < p, from Theorems

5 and 6.

Let us alter the transition law to define {Xn I by setting for x > 1

B0 (x,x-l) - r(l-q)

B 0 (x,x-l) (l-r)(l-q)

but leave B1(xx-l) - p(l-q), B1(xx+l) - (l-p)(l-q) as for {XI. For the

embedded chain {0Xn} we have, by considering whether the chain {Xn} leaves

level zero or not, for x > 1,

(3.25) R(0X I en - x) - x > (l-2r)(l-q) + (l-2p) ° 1-q q

the second term comes because, once the chain {X n) leaves level 0 (with

probability q) the expected number of steps to return is given by (1-q)/(1-2q)

and on each such step the expected drift to the left is, independent of level

change, l-2p (unless the chain hits ON x 0), which gives the inequality in

, i _ - i,
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(3.25)).

From (3.25) we see that, provided q and r are small enough, and p is

not too much greater than , we can ensure that for all x > 1

1E( 0 x 0 Xxn X) - x> .

This is enough to ensure that {o X n} is transient, as can be seen by

comparing {0 Xn} with a random walk with positive drift. Hence {0Xn does

not have a stationary measure, and thus neither does {Xn }. 0

In order to deduce positive recurrence of {X I we need to know,
n

essentially, that 0 exists and has a bounded density with respect to O -

If this happens then we have, for some c,

S011(dy) E(- 0 I x0 - coy)) < K J i(dy) VQ0 I x0 - (o,y))

= K i o(dy) tE( I Oy)<

and so {Xn I is positive recurrent also. The case when E is finite is the

only situation where this is automatically true, and we can at least prove

Proposition 5 : If E is finite and {A(x,*)} is an irreducible stochastic

matrix, then (3.1) is necessary and sufficient for {X } to have a stationary
n

distribution. 0

Proof : From the argument above and Proposition 4 (i), our result will

follow from Theorems 5 and 6 provided only that 011(x) > 0 for each x e E*.

It is easy to show that irreducibility of {A(x,.)) implies irreducibility

of {L(x,-)}, which gives the required positivity. 0

I

t -
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§4 Some queue1ni models

(i) The GI/PH/l queue

This model is described in detail in Neuts [8], and we do not repeat

details here. The bivariate chain {Xn} consists of (NnP n ) , where Nn is

the number of customers immediately before the nth arrival and P is then

phase of service immediately after the nth arrival.

The main result that is new in this situation comes from Proposition

1. Recall that the chain {0XnI gives the phase on successive returns to

level (0,E); this is precisely the phase of service of the arriving

customer who finds the queue empty, and so {0XnI consists of a sequence of

independent and identically distributed random variables; from [8 ] we have

that the distribution of these phases is given by a vector a. The chain

{0Xn1, and hence {X n), then trivially satisfies the irreducibility Condition

I, with 0j) - a J. Neuts (8 3, Lemma 7) shows that (3.1) is equivalent to

the usual stability condition for the GI/PH /1 queue.

From the discussions of §3 and §2 it follows that, since E is finite,

under these stability conditions the invariant measure for {Xn I has the form

R(k,j) - c a sk (m,j)
m

clearly 0T1(J) - aj since (0Xn) is a sequence of i.i.d. variables. Since E

is finite, S is R-recurrent when it is irreducible, and so from Theorem 4

we have that S is the unique solution of S - AIS] with convergence norm

R > 1 in this case. This shows that Theorem 4 of [8 ] follows from our

results without extra conditions being necessary.

The identification of a0 - ca is deduced in [8 1 algebraically, but

the fact that, from Proposition 1, B(S] a also, is not noticed there.
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(ii) The GI/G/l queue

There are various embedded Markov chains on which the results above

might be demonstrated. In order to compare results with the GI/PH/I queue

above, we will take {X} - {(N S )} as the chain with N as the number of

customers immediately before the nth interarrival time and Sn as the residual

service time immediately after the nth interarrival time.

We let G denote the distribution function of service times, and

write f t dG(t) for the mean service time; we let F denote the distri-

0

bution function of interarrival times, and write X f J t dF(t) for its mean.
0

We assume both X and V are finite.

Let 0, 02, 03,... denote a renewal process with Tn - an1 having the

service distribution function G; and let Rt denote the residual life-time

at time t in this process, i.e. Rt - - N(t), where N(t) is the number of

renewals in [O,t]. If R0 - x then a, x. Now write

(4.1) Pn(x,y) -P(an _< t < a.+,, Rt< y I R0  x)

for the probability that n renewals occur in [0,T] and that the residual

lifetime at t is in [O,y] given R0 - X. It is easy to verify that the

chain {Xn ) has the form (1.1) with

cc

(4.2) A (x,[O,y]) " Pn(x,y) dF(t)

0

and

Bn(x,[O,y)) I A - (x,[0,=))] (y).
n+1

Hence (0Xn) again consists of i.i.d. variables with distribution

function G,.and so 0
1l(O,y] - G(y) provided it exists; for this we need to

* ensure that fOXn1 does not terminate. To check that {0Xnl is a proper

chain we can use (3.1), since {0X1 terminates if and only if (0n does. ,

O n
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Our main result is

Theorem 7 (1) A necessary and sufficient condition for {A(x,.)1 to have

a stationary probability measure v satisfying (3.1) is that X > p.

(ii) When X > U, {Xn} has an invariant probability measure

(J,.) given by

(4.3) i(k,,) = c f dG(x) sk(x,-)

0

where S(x,.) is the minimal solution of

S(X.'+ |0Y- fsJ(x~dw) A i(w, [O,y]) , y e [0,-) ;
J 0

and the constant c is given by

(4.4) c - 1 + U [ F l*(x)] dG(x)} {exp (1-an) / n}

0nO nil

where

(4.5) an [ - Fn*(x)] dG *n(x)
0

Proof (i) From (4.1) and (4.2),

(4.6) A(x,[O,y]) = J F(dt) Pt(xy)
'where pt(x,y) =mP(R t . y I R0 - x). The kernel A is thus the transition

probability kernel corresponding to the residual life-time process sampled

at points of an (independent) renewal process generated by F. Provided

V < -, the residual life-time process has invariant measure v vith
x

V[Ox] - [- G(x)]dx

0

and this transfers immediately to the chain with kernel (4.6) (see [13] for

other results concerning the relationship of the process {Rtd to its

"sampled" version.)
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On the other hand, from (4.1)

n Pt(x) - E(N(t) I X)

The stationarity of v then gives, by Fubini's Theorem

f V(dx) B(x) = J v(dx) E(N(t) R 0 . x)] dF(t)

0 0

- J [t/Pj dF(t) - X/U,

0

which gives our first result.

(ii) From Theorem 5, {X} will have a stationary probability measure

when A > U, and hence {0 Xn} will at least return to 0 with probability one.

Hence 0 exists and has distribution function G(x), and 9 given by (4.3) is

at least a a-finite stationary measure for {Xn) from Theorem 1 (1i).

We have to prove that II is a probability measure, and this does not

follow from the general theory used so far: see the end of §3 for a

discussion of the difficulties. We need to prove

(4.7) I oT(dy) X(O X0 -(O,y)) <

and to do this we need to evaluate E( 0 I X0 - (O,y)) for this particular

chain. Suppose X0 - (O,y) and that during the service time y of this

first arriving customer, ny further customers arrive. By rearranging the

order of service in the usual way, it is clear that in this situation the

expected number of customers served before 0 is again reached is nyy, where

y is the expected number of customers in a busy period in the GI/G/1 queue;

from [41 it is known that, when >V,

(4.8) y -exp{ .(1-a n)/n) < o

where a is given by (4.5).

-I
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Thus

'E (T0 X0 -(O,y)) -1 -IE(nY y X 0 -(O,y))

and standard renewal theory (3] shows that for any e and y large,

(4.10) 0 < C I nf*(y, _ Y/XI < y

n=0

Since 0ll(O,y] - G(y) and G has a finite mean, (4.7) follows from (4.9) and

(4.10). The (finite) value (4.4) of (4.7), which is the constant c in

(4.3), follows from (4.8) and (4.9). 0

As a Corollary to (4.10) and (4.11) we see that, if W)' is any chainn

with structure: (1.1) where A is given by (4.2) and B has the "replacement"
n n

value

B'(x,10,yl) C I: A (ict0-))1 H(y)
n n+l

for some distribution function H, then {V)} will have a a-finite invariant

measure

JI'(k,[0,y]) -JdH(x) S k(x,[0,yJ)

0

and HI' will be a probability measure if and only if H has a finite mean.

We can also obtain, for the queueing chain {X a

Proposition 6 :The stationary distribution nl has finite mean

1*- kIT(k,[O,ao)) if and only if F has finite variance. In this case

(4.11) 11* - G [ (x)]E I F n.* (xfly dx

0n

where y is given by (4.8).
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Proof : From (3.23) we have that U* is given by (4.11), and from (4.10) V*

will be finite if and only if V has a finite mean. It is well-known that

this holds if and only if F has a finite variance. 0

(iii) The M/G/l queue

The expression [4.8] for y simplifies when the inter-arrival time is

exponential: from Neuts [7], we have

y - X./(G -

In this case also we have the expected number of arrivals in [O,y] is just

y/X, and so from (4.4), c = X/(X - i) also.

This is a computationally useful fact. The standard method of

deriving {R(k,A)} from the theory above is to solve the non-linear operator

equation S - A[S] to the desired accuracy then substitute in (4.3). In

general c can only be estimated as the normalising constant

N k -cN - ( dG(x) I S cx,[O,o))] -

0 0

where N is the number of terms for which the iterates are calculated.

The difference [1 - c/cN] represents the total probability mass in the

levels above N, i.e.

[ - c/cN] I X T1(j,[o,))
N+l

which is the intrinsic error in computation of H when only a finite number

of the iterates Sk are used.

Finally, we note that in this case, from (4.11) we can recover the

fact that the mean queue length at inter-arrival times in equilibrium is

* f,[ y2 dG(y)] / U(X-)

0
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